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Introduction
The goal of building a multivariate calibra-
tion model is to predict a chemical or
physical property from a set of predictor
variables, e.g. analyte concentration or
octane number from a near infrared (NIR)
spectrum. A good multivariate calibration
model should be able to replace the labo-
rious, possibly imprecise reference
method. The quality of a model therefore
primarily depends on its predictive ability.
Other properties such as interpretability of
the model coefficients might also be of
interest, but here the focus is on the prob-
lem of quantifying the predictive ability.
Note that this problem is solved for
univariate calibration based on least-
squares straight-line fitting because stan-
dard expressions can be used to calculate
prediction intervals (Figure 1). Unfor-
tunately, multivariate calibration is much
more complex owing to the richer data
structures involved and the large variety of
estimation procedures available. Here we
will restrict ourselves to model building
using partial least squares regression
(PLSR), since it is the de facto standard in
chemometrics. Because generally agreed
expressions for multivariate prediction
intervals do not exist, one usually
combines the observed prediction errors
for an independent test set in a standard
error of prediction (SEP). This summary

statistic is then used as an approximation
of the standard deviation of the prediction
error for all future prediction samples.
However, this average prediction error esti-
mate cannot be used to construct predic-
tion intervals as displayed in Figure 1 for
the obvious reason that it is a constant.

Recently, important advances have
been reported with respect to estimation
of multivariate SEP. A clear distinction can
be made in terms of their intended

scope: while DiFoggio1 and Sørensen2

improve estimation of SEP on the global
set level, Fernández Pierna et al.3 claim
to achieve this on the individual sample
level. The latter contribution can therefore
be seen as an attempt to reduce the gap
between univariate and multivariate cali-
bration methodology. The purpose of the
current paper is to illustrate the internal
consistency of these contributions. This
consistency directly follows from a
comparison of relatively simple mathe-
matical formulae. The main point to be
learned from these formulae is the
confusing role of the uncertainty in the
reference values used for model building
and testing.

Example data set
Fearn4 published a NIR data set that was
collected for the prediction of % protein
in ground wheat samples. The reference
values were obtained using the Kjeldahl
method, which has an estimated standard
deviation of 0.2% at 10% protein. The
calibration and test sets consist of 24 and
26 samples, respectively. The NIR
reflectance spectra are digitised at six
different wavelengths in the range
1680–2310 nm. This data set has been
used extensively in the chemometrics
literature for method testing. Mean
centring has been applied before PLSR
modelling. Cross-validation has been
employed for factor selection and it was
concluded that the optimum model
requires four factors (see Figure 2). A
principal component analysis of the
mean-centred spectra reveals that test
sample 1 deviates from the rest of the

Estimation of prediction
uncertainty for a multivariate
calibration model
N.M. Faber,a,* F.H. Schreutelkampb and H.W. Vedderc

aChemometry Consultancy, Rubensstraat 7, 6717 VD Ede, The Netherlands
bAbbott International, Quality Assurance, Rieteweg 21, 8041 AJ Zwolle, 
The Netherlands
cBlgg Oosterbeek, Mariendaal 8, PO Box 115, 6860 AC Oosterbeek, 
The Netherlands

“There is little profit in
approximations which are good
but not known to be good.”
B.N. Parlett, The Symmetric Eigenvalue Problem (1980)

Figure 1. Univariate instrument signal versus

analyte concentration. The model (—) is

based on the measurement for four samples

(o). The dashed lines (---) are the 95%

prediction bands that connect the prediction

intervals for each value of the instrument

signal. The prediction intervals are smallest

close to the model centre, where the model

is most precise.
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population. This can be visualised by plot-
ting the normalised scores (Figure 3). The
results for the fourth principal component
indicate that this sample is much further
away from the mean of the calibration set
data than are the others. Plotting princi-
pal component scores is often more infor-
mative than plotting the spectra
themselves. In this case, the mean-
centred spectra do not give a clear indi-
cation of why this test sample should be
abnormal (see Figure 4). It is important
to note that extreme test samples are
very useful in the current context, namely
prediction uncertainty estimation on both
the global set as well as the individual
sample level.

Multivariate SEP at the
global set level

Current practice is to characterise
multivariate SEP at the set level. An SEP
value is calculated as the root mean
square (RMS) difference between predic-
tions and reference values. It is important
to stress that this procedure is only
sound provided that the noise in the
reference values is negligible compared
with the true prediction uncertainty. The
reason for this is that prediction errors are
defined with respect to the true quanti-

ties, rather than noisy reference values.
Consider the ideal situation where one
has the perfect model and noisy refer-
ence values—a mental experiment. Of
course, this example is not practical, but
adding noise to the reference values as
described by DiFoggio1 and Coates5 can
always approach it to some extent.
Clearly, the predictions should be perfect
and the only contribution to SEP would
originate from the measurement error in
the reference values. In this extreme
case, SEP would just estimate the stan-
dard deviation of the measurement
error—it would not relate to the true
prediction uncertainty at all! Thus, in

Figure 2. Set level SEP estimated using cross-validation as a function of

the number of PLSR factors included in the NIR calibration model (o).

The standard deviation of the reference value uncertainty is added as

guide to the eye (---).

Figure 3. Normalised scores for principal components 1 through 4.

Figure 4. Mean-centred reflectance spectra digitised at six wavelengths

between 1680 and 2310 nm.

Figure 5. Reference value versus NIR prediction (o). For many samples

the deviation from the “ideal” line with slope unity (---) is to a large

extent due to the reference value uncertainty (sref = 0.2% protein), i.e.

the deviation is not entirely a vertical one. Test sample 1 forms an

exception: it has a relatively large (true) prediction error because it is an

outlier.
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general, the presence of this spurious
error component leads to a so-called
apparent SEP:1

where nt denotes the number of samples
in the test set, y^i is the prediction of prop-
erty y for sample i (i = 1, …, nt) and yref,i

is the associated reference value. The
effect of the spurious error component
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is observed in Figure 2, which
summarises the PLSR factor selection
using cross-validation: the standard devi-
ation of the reference value uncertainty
(sref = 0.2%) is a lower bound for the
SEP estimate. Similar plots abound in the
multivariate calibration literature. The
common plot of reference value versus
prediction gives a graphical illustration of
Equation (1), see Figure 5. It is clear that
Equation (1) is equivalent to interpreting
the deviation of the points from the

“ideal” line entirely in the vertical direc-
tion. However, the foregoing discussion
shows that the true prediction errors can
be confounded to a large extent by
measurement errors, which lie in the
horizontal direction. In other words, the
interpretation of such a plot is not always
straightforward. The model could predict
far better than one infers from the appar-
ent prediction errors.

A simple but effective correction for the
spurious error component leads to1

Figure 6. A comparison of sample-specific SEPs (o), the standard devi-

ation of the reference value uncertainty (---) and the apparent set level

SEP (— —). Note the exceptionally large (sample-specific) SEP for the

outlying test sample 1.

Figure 7. Reference values (o) and predictions (•) with 95% prediction

interval. The error bars are calculated by incorporating the standard devi-

ation of the reference value uncertainty (sref = 0.2% protein) into the

sample-specific SEPs. Note that the outlying test sample 1 is contained

in the expanded prediction interval.
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for Infrared Multivariate Quantitative
Analysis) and recommends the use of
the following expression:

where hi symbolises the leverage for
sample i, SEC stands for the standard
error of calibration and the remaining
symbols are as defined under Equation
(1). The leverage is related to the distance
of a sample to the mean of the calibra-
tion set data. The calculation of SEC is
similar to the calculation of the apparent
(set level) SEP, i.e. Equation (1), but now
one has to account for the degrees of
freedom of the calibration model.
Because SEC is explicitly based on refer-
ence values, Equation (3) leads to an
apparent sample-specific SEP when the
reference method is imprecise. In other
words, Equation (3) is the sample-specific
analogue of Equation (1). Obviously, the
correction Equation (2) can also be
applied on the sample level, leading to3

where ytrue,i is the true value of property
y for sample i. This formula has been
used to calculate the sample-specific SEPs
displayed in Figure 6. Figure 6 visualises
that for the current NIR calibration 21
predictions (out of 26) are more precise
than the reference value. In particular, the
prediction for test sample 5 is more
precise by almost a factor of 2. Likewise,
this plot illustrates two drawbacks of the
(set level) SEP as an uncertainty estimate
for all future predictions. First, it does not
differentiate between individual samples.
Second, owing to the spurious error
component of the reference method it
often grossly overestimates the true
prediction uncertainty. The preceding
results imply that an adequate measure
of prediction uncertainty is obtained
when using Equation (4). Unfortunately,
this claim cannot be directly verified by
observations, because true reference
values are not available. Consequently,
one must resort to an indirect test. It is
easily verified that a suitable indirect test
is obtained by calculating an “expanded”
SEP using Equation (3). This procedure
leads to the expanded prediction intervals
plotted in Figure 7. One expects
5% × 26 = 1 reference value to lie
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outside these expanded intervals, while
the critical t-value is exceeded for test
samples 3 and 6. Considering that it is
only slightly exceeded for test sample 6
(2.12 against 2.09), one may infer that the
interval provides correct coverage for the
current data set. For other promising
results, see Fernández Pierna et al.3

Concluding remarks
In a formal sense, calibration model vali-
dation requires error-free reference values.
In the rather common not-so-error-free
situation, one should try to employ an
estimate of the reference value uncer-
tainty to correct for its adverse effect. The
benefit of such a correction is that it
always leads to sharper prediction uncer-
tainty estimates, e.g. narrower prediction
intervals. Laasonen et al. have recently
published a thorough validation of a NIR
method for determining the caffeine
concentration in a pharmaceutical prod-
uct.6 This work could easily be taken a
step further by considering sample-
specific uncertainty estimates. Finally, it is
stressed that the proposed methodology
is, in principle, not restricted to NIR cali-
bration. Whereas the correction on the
global set level is clearly independent of
data and calibration method, the reason-
ing behind Equation (4) suggests that it
should be suitable for other types of spec-
troscopy and calibration methods that are
similar to PLSR.3 Application of Equation
(4) to the calibration of excitation emis-
sion fluorescence data using multiway
PLSR is currently under active research (R.
Bro, Å. Rinnan, N.M. Faber, in prepara-
tion).
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where sref is an estimate for the precision
of the reference method. This standard
deviation is conveniently estimated as the
standard error of laboratory (SEL) from a
series of repeated measurements. Clearly,
application of Equation (2) will always
lead to an improvement in the sense that
the corrected SEP is smaller than the
conventional estimate obtained using
Equation (1). Since apparent SEP also
contains the inherent variability of the NIR
methodology, it should, ideally, be larger
than sref. However, the corrected SEP can
only be properly estimated in practice if
representative values for the apparent SEP
and sref are available. Imprecise estimates
can, for example, lead to the odd situa-
tion where apparent SEP < sref and the
correction is not feasible. Obviously, suffi-
cient experimentation is the price to be
paid for obtaining a sharper SEP estimate.
Sørensen2 has documented a sizeable
improvement for a number of NIR appli-
cations. It is important to note that one
should not insert a pessimistic estimate
for sref in Equation (2), because that
would lead to an optimistic estimate for
average prediction uncertainty. Finally,
there is no reason why the corrected SEP
could not be smaller than sref . Thus,
Equation (2) shows that NIR predictions
can, on average, be more precise than
the reference values used for building the
model, a fact that has been aptly illus-
trated by the noise addition experiments
of DiFoggio1 and Coates.5

Multivariate SEP at the
individual sample level
Characterising prediction uncertainty on
the set level is the only way to answer
important questions like “how good is my
calibration?” It is therefore logical, for
example, to monitor changes in the (set
level) SEP when optimising a calibration
model (spectral pre-treatment, factor
selection etc.). However, as explained
before, this procedure does not lead to
sample-specific prediction intervals with
good coverage probability. The American
Society for Testing and Materials (ASTM)
has recognised the need for a sample-
specific SEP (E1655: Standard Practices
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