
Question: Why learn matrix algebra
when you can buy programs “off-the-
shelf”?
Answer: You may need to make small
changes to programs so that they fit
your data.

There are of course other reasons;
such as you can soon learn to do simple
things, which may be very useful.
However, if you are going to change
programs then you need to know
about something we have not men-
tioned yet—Vectorisation. Matrix alge-
bra can be exploited to avoid “do
loops” (for and while statements) in
programs. Sometimes this happens nat-
urally, because one is programming a
matrix expression in the first place.
Sometimes it takes a little thought (and
sometimes a lot of thought!) to realise
that what looks like a series of calcula-
tions can be written as a single matrix
expression. MATLAB calls this vectori-
sation. These “clever” bits of the pro-
gram can be the hardest to decipher,
but you need to learn to recognise it if
you want to tinker with programs.

Lets start by looking at something
that you have seen before. In the
TDeious Fourier transformation pro-
gram,1 we needed to compute a matrix
of cosines and a matrix of sines. Rather
than use a for loop we set up some
matrices and then did all the calcula-
tions in two simple lines of code.
n=size(y,1); % number of data
% points
k=n/2; % half number of data
% points
t=[1:n]’; % n x 1 col vector
% 1,2,...,n
p=[1:k]; % 1 x k row vector
% 1,2,...,k

wpt=(2*pi/n)*(t*p);
% n x k matrix with ij’th 
% element 2(pi)ij/n

Now we are ready for the clever
lines that demonstrate that it works
with MATLAB functions.
C=cos(wpt); % n x k matrix of
% cosines
S=sin(wpt(:,1:(k-1)));
% n x k-1 matrix of sines
% (omit last one because it
% would be a col of zeros
% anyway)

Most MATLAB functions will work
on vectors or matrices just as they do
on scalars. Thus it is more efficient,
both for ease of programming and
speed of execution, to construct the
matrix and then apply the sine and
cosine functions.

Are you ready for something a little
more challenging? In the last column2

the LitmusB program contained the
lines:

% Estimate absorption 
% coefficients by a least
% squares regression
% THIS WILL BE EXPLAINED ON
% ANOTHER OCCASION
bcoefb=cb’*ab/(cb’*cb);

This computes the least-squares slope
coefficients for 48 separate fits of
straight lines through the origin, all in
one go.

If we have n pairs of observations
(yi, xi), then the formula for the slope
coefficient is

In our example, n = 9, and the 9
concentrations xi are contained in the
9 × 1 vector cb. We have absorptions
yi for, and wish to compute regressions
for, 48 different wavelengths. The
matrix ab is 9 × 48, with the 9 × 1
vectors of yi for different wavelengths
making up its 48 columns.

b x y xii

n

i ii

n
=

= =Â Â1

2

1
/

22 ©Spectroscopy Europe 2001 Spectroscopy Europe 13/6 (2001)

TONY DAVIES COLUMN

Vectorisation in Matrix Algebra
[Lesson 5 of Matrix Algebra
(Vectorisation)]

Tony Davies
Norwich Near Infrared Consultancy , 75 Intwood Road, Cringleford, Norwich NR4 6AA, UK

Tom Fearn
Department of Statistical Science, University College London, Gower Street, London,WC1E 6BT, UK

Figure 1. A scalar produced as the product of a row vector and a col-
umn vector.

cb av'*
1 × 1 scalar

=

cb' 1 × 9 row vector

*

av 9 × 1
column vector



Thinking one wavelength at a time,
one could extract the appropriate col-
umn of ab into a 9 × 1 vector, av say.
Then the slope b for that wavelength
could be computed as
b = cb’*av/(cb’*cb);

Looking at the top of this, cb¢ is a
1 × 9 row vector with entries (x1, …,
x9) whilst av is a 9 × 1 column vector
with entries (y1, …, y9). Thus, with the
usual rules for matrix multiplication,
(Figure 1) the product cb¢*av is a
scalar whose value is the sum of prod-
ucts of xi and yi, i.e. the numerator in
the equation for b. Similarly the prod-
uct cb¢*cb is another scalar, the sum of
squares of the xi, which is the denomi-
nator in the equation.

The point, though, is that we do not
need to extract the columns of ab to
do this. We can leave them in place
and do all 48 computations at once.
What makes it particularly easy to do
this is the fact that the xi are the same
in each of the 48 cases. Thus the
(scalar) divisor computed as cb¢*cb is
also the same for each of the 48 calcu-
lations, and this appears unchanged in
the original line of code
bcoefb=cb’*ab/(cb’*cb);

What is different is the numerator,
which as the product of the 1 × 9 row
vector cb¢ and the 9 × 48 matrix ab is
now a 1 × 48 row vector. The matrix
multiplication rules (Figure 2) mean
that the first element of this vector is
the product of cb¢ and the first column
of ab, the second element is the prod-
uct of cb¢ and the second column of
ab, and so on. Thus we have calculated
the 48 numerators that we need for the
48 slopes without dismembering ab.
Dividing by cb¢*cb then gives us a
vector of 48 slope coefficients.

This is neat and simple. It is also an
obvious thing to do, because the
absorptions naturally start in a matrix.
We just have to realise that it is not
necessary to extract them. Some exam-
ples are more artificial, in that one con-

structs a matrix from smaller parts espe-
cially so that vectorisation can be used.
In trying to understand someone else’s
code, it can be helpful to draw a pic-
ture of the matrices involved, so that
one can clearly see where the original
quantities, e.g. the vectors of absorp-
tions in this case, fit in.

Examples
The best way of learning something

is to try to do it yourself ! So here are
some examples for you to do. The
answers will be found on the
Spectroscopy Europe website at:
http://www.spectroscopyeurope.com/
td_col.html.

1) Convert a vector of
Fahrenheit temperatures to
Centigrade
% Program f2c converts
% degrees F to degrees C.
Tf=[0:20:240]; % vector of
% temperatures from 0 to 240
% at intervals of 20.
format short % restricts 
% output to four decimal 
% places.
n=size(Tf,2); % Check size of 
% array
TCc=zeros(1,n); % Set-up 
% vector for results.
for k=1:n % Repeat for each 
% observation in the input
% vector.
TCc(1,k)=(Tf(1,k)-32)*5/9;
% Calculate the converted
% temperature.
end
TCc % Print the answers

2) Centring data
We normally centre data before

principal component analysis (PCA).

That is we find the mean value of the
spectral data at each point in the spec-
trum; then we subtract this mean for
each observation. Once you have the
spectral data this can be done with one
line of code. Your task is to replace the
“For loops” with one line.
load(‘S12a’); % S12a is 
% spectral data
X = spec; % Array of 12 
% spectra containing 864 data 
% points;
% This is an array of 12 x 
% 864
% Centre data
% For loop to centre data
n=size(X,1) % number of 
% spectra
j=size(X,2) % number of 
% readings in spectrum
Xd=zeros(n,j); % An array to 
% hold the answers
Xda=zeros(n,1); % An array to 
% hold the answers for a 
% column
for k=1:j % Repeat for each 
% data point in the spectrum
Xs=X(:,k); % Column of X-data
mn=sum(Xs)/n; % average of 
% column

for m=1:n % Repeat for each 
% observation in a column of
% data
Xda(m)=Xs(m)-mn; % Subtract 
% average from each value in 
% column
end

Xd(:,k)=Xda; % Put column 
% into result array
end

3) MSC transformation of
spectroscopic data

Multiple Scatter Correction (MSC)3

is widely used in NIR spectroscopy for
attempting to correct for scatter in dif-

24 Spectroscopy Europe 13/6 (2001)

TONY DAVIES COLUMN

=

cb' 1 × 9 row vector

*
cb ab'* 1 × 48 row vector

Another 43 elements

ab 9 × 48 matrix

Another 43 columns

Figure 2. A row vector produced as the product of a row vector and a matrix.

http://www.spectroscopyeurope.com/td_col.html


26 Spectroscopy Europe 13/6 (2001)

TONY DAVIES COLUMN

fuse reflection spectra before using the
data in calibration calculations. The
method involves the calculation of a
mean spectrum for a set of data (aver-
aged in the wavelength dimension) and
then calculates corrections for each
spectrum relative to the mean spec-
trum. The spectral data for each spec-
trum is regressed against the mean
spectrum and this provides an inter-
cept, a, and slope, b, for each spectrum.
The spectrum is then corrected by sub-
tracting a from each observation and
dividing the result by b: x(corr) =
(x – a)/b; where x is the original spec-
trum and x(corr) is the corrected spec-
trum. You can read a full description of
MSC and enjoy a sneak preview of a
forthcoming book by going to:

http://www.nirpublications.com/
userfriendly/.

Here is a program that does the cal-
culations. Can you replace the “for
loops” with appropriate matrix algebra?

% MSC for TD13.6

% multiplicative scatter 
% correction

load(‘S12a’); % Spectral data 
% 12 x 864 array

X=spec;

[r,c]=size(X);

%

% Replace the for loops

msp=zeros(1,c); % array for 
% means

for k=1:c % repeat for each 
% wavelength

msp(1,k)= sum(X(:,k))/r;

end

Gm=mean(msp); % the group 
% mean

cmsp=zeros(1,c);

for k=1:c

cmsp(1,k)=msp(1,k)-Gm;

end

div=cmsp*cmsp’; % this is the 
% sums of squares as above

B=(X*cmsp’)/div; % This is a 
% repeat of the bcoefb in the 
% text above!

A=mean(X’)’-B*Gm; % “mean” is 
% a MATLAB function that 
% calculates an average value
% of a column vector.

% Applied to a matrix, 
% mean(X), returns a row 
% vector of column means.

% Two final for loops or one
final line?

Xmsc=zeros(r,c);

for j=1:r

for k=1:c

Xmsc(j,k)=(X(j,k)-A(j))/B(j);

end

end

We hope that you do not need any
knowledge that has not appeared in
these columns but you may need to
revise the earlier lessons, all of which
are available from the Spectroscopy
Europe web site:
http://www.spectroscopyeurope.com.

References
1. A.M.C. Davies and T. Fearn,

Spectrosc. Europe 12(4), 28 (2000).
2. A.M.C. Davies and T. Fearn,

Spectrosc. Europe 13(4), 22 (2001).
3. P. Geladi, D. McDougall and H.

Martens, Appl. Spectrosc. 39, 491
(1985).

http://www.nirpublications.com/userfriendly/index.html
http://www.spectroscopyeurope.com

