
TONY DAVIES COLUMN

28 © Spectroscopy Europe 2000 Spectroscopy Europe 12/4 (2000)

At the end of the last column1 we promised that this time
we would show how matrix algebra can be used for real
computational tasks. The chosen task is Fourier transforma-
tion (FT) of a near infrared (NIR) spectrum. Those who
know Tony Davies will not be surprised at this choice of sub-
ject but in the third lesson the reason for wanting to do the
obvious will become apparent. Many of you will know and
use something called the fast Fourier transform (FFT)2 but we
want you to understand exactly what is happening during FT
and we will do this without the added complication of the
FFT. If anyone would like an electronic version of the
MATLAB code below, you can find it on the Spectroscopy
Europe web site, at http://www.spectroscopyeurope.com/
td_col.html. We should stress though that this is not an effi-
cient way of computing a Fourier transform—the FFT would
be very much faster.

We reminded you quite recently3 of the basis of FT; that
any curve can be approximated by the summation of a series
of sine and cosine waves. The idea of using FT for the data
compression of NIR spectra was described by Fred McClure
and his colleagues and we will use their procedure,4 as it
avoids becoming involved with complex numbers.

If we have a spectrum, which has been recorded at n
equally spaced wavelength intervals, y(1), y(2), y(3),,
y(n) then it can be approximated by:

where the coefficients are given by

for j = 1, 2, 3, … , k – 1

and

for j = 1, 2, 3, … , k – 1.

In the previous article we put instructions directly into the
MATLAB program but when we have more complex
requirements it is normal practice to enter the instructions
into a file and then instruct MATLAB to execute the file. So
now we will give you the program (instructions are in red
while comments are in green) and explain it as it would pro-
ceed.

% TDeious Fourier Transformation
% Number of pairs of Fourier
% coefficients to use in reconstruction
npairs=20
fcs=npairs+1

While the primary use of FT is to reorganise information
(as in converting an IR interferogram to a spectrum), another
very important application is in data compression. If we start
with n spectral observations we will have n/2 pairs of Fourier
coefficients but many of the high frequency coefficients will
be close to zero and they can be ignored with very little loss
of information.

% Get some data
load testspec;

Our test spectrum is an NIR spectrum of a piece of a PET
polymer, which was recorded at 2 nm intervals over the
range 1100–2498 nm.

d=H_XV’; % d is a 700 x 1 column vector

The data had been named “H_XV” but it is more conve-
nient for us to rename it to the single character “d”. H_XV
was a 1 ´ 700 row vector which we transposed to make d a
700 ´ 1 column vector.

dp=size(d,1) % dp is 1 x 1; known as a
% “scalar”

“size” is a MATLAB function which will find the dimensions
of a matrix.

Note that the statement is not terminated by a “;” so the
value of dp will be printed on the screen.

w=[1100:2:2498]’; % w is a 700 x 1
% column vector

“w” is the wavelength scale for plotting; 700 wavelengths
have been calculated from 1100 to 2498 nm in 2 nm inter-
vals. These correspond to the wavelengths of the original
spectrum.
% use this spectrum for FT
% calculates FT using equations from
% McClure’s paper in Appl. Spectrosc.

b
n

y h
jh

nj
h

n

= 



=

∑2 2

1

()sin
π

a
n

y h hk
h

n

=
=

∑1

1

()cos π

a
n

y h
jh

nj
h

n

= 



=

∑2 2

1

()cos
π

a
n

y h
h

n

0
1

1
=

=
∑ ()

() cos sin ()y h a a
jh

n
b

jh

nj
j

k

j
j

k

= + 





+ 



= =

−

∑ ∑0
1 1

12 2
1

π π

The TDeious way of doing Fourier
transformation
(Lesson 2 of matrix algebra)
A.M.C. Davies
Norwich Near Infrared Consultancy, 75 Intwood Road, Cringleford, Norwich NR4 6AA, UK

Tom Fearn
Department of Statistical Sciences, University College London, Gower Street, London, UK

hold on

Allows us to plot several lines on the same figure.

plot(w,d,’k’);

Plots the original data; “k” specifies a black line

% Tilt spectrum to make ends equal

NIR spectra usually show an upward linear trend. One of
the assumptions of using FT is that the waveform repeats to
infinity, from each end. If the ends of the spectrum are not
equal this discontinuity will cause “ringing”. We make them

equal by joining the ends of the spectrum with a straight line
and then subtracting it across the spectrum.

% calculate slope of the line
dm=dp-1; % dm is 1 x 1
s=(d(dp)-d(1))/dm; % s is 1 x 1
e=s*[0:dm]’; % e is 700 x 1

Our first matrix operation. We have just calculated the
correction for our 700 point data and then with another line
we can do 700 subtractions! s is 1/699 of the difference
between the heights of the first and last spectral points. The
next piece of code subtracts 0 from the first point, s from the
second, 2s from the third and so on.

Spectroscopy Europe 12/4 (2000) 29

TONY DAVIES COLUMN

1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1. NIR spectrum of a sample of PET; original
spectrum (black) and titled spectrum (blue); plotted
as log1/R against wavelength, nm.

1000 1500 2000 2500
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2. The original (black), tilted (blue) and the
difference spectra (green) using 20 pairs of Fourier
coefficients for the reconstruction of the spectrum.

% adjust data by slope of line
e1=d-e; % e1 is 700 x 1
plot(w,e1,’b’);
pause

We plot the corrected spectrum and the program waits for
an input before continuing. “b” specifies a blue line. The pic-
ture at this point is shown in Figure 1.

Now we are ready to do the FT. First we set up some
matrices and constants:

y=e1; % this is the tilted spectrum,
% 700 x 1
n=size(y,1); % number of data points
% (700)
k=n/2; % half number of data points
% (350)
t=[1:n]’; % n x 1 column vector
% 1,2,...,n
p=[1:k]; % 1 x k row vector 1,2,...,k
wpt=(2*pi/n)*(t*p); % wpt is an n x k
% matrix

t is an n ´ 1 column vector and p is a 1 ´ k row vector, so
t*p is an n ´ k matrix with the element in the h th row and
j th column equal to the h th element of t (which has been set
equal to h) times the j th element of p, which is equal to j,
resulting in jh. Thus the elements of wpt are 2pjh/n. Now we
find the sines and cosines of all these, leaving out the last sine,
because it would give a column of zeros.

C=cos(wpt); % n x k matrix of cosines
S=sin(wpt(:,1:(k-1))); % n x k-1 matrix
% of sines

Since sin(matrix) replaces each element of the matrix with
its sine, we were able to calculate 700 ´ 350 sines with a sin-
gle command, no loops needed. Now we put the sines and
cosines together in one big matrix, with a column of ones at
the start.

X=[ones(n,1) C S]; % put together into
% n x n matrix

X is n ´ n (700 ´ 700) because it is made up of a 700 ´ 1
column of ones, a 700 ´ 350 matrix of cosines and a
700 ´ 349 matrix of sines, placed side by side. There is one
column for each of the terms in the sum in Equation 1, and
one row for each wavelength.

If we were to write Equation 1 in matrix form as ŷ = Xa,
where ŷ = (ŷ1, …, ŷn)¢ and a = (a0, a1, …, ak, b1, …, bk –1)¢
then the X just constructed is the one that would be
required. To get ŷ(h) we multiply the h th row of X, which
contains {1, cos(2p1h/n), …, cos(2pkh/n), sin(2p1h/n), …,
sin[2p(k – 1)h/n]} by the column vector a, giving exactly the
sum in Equation 1. Interestingly, the same X will give us the
coefficients aj and bj as given by the formulae below Equation
1, using the following code

div=n*[1 (1/2)*ones(1,k-1) 1
(1/2)*ones(1,k-1)]’; % div is n x 1
% vector
fc=(X’*y)./div; % fc is n x 1 vector of
% Fourier coefficients

The first of these two lines sets up a vector containing n,
n/2 repeated k – 1 times, n, and n/2 repeated k – 1 times,
which corresponds to the divisors in the equations for the
coefficients. In the second line X¢*y produces an n ´ 1
(700 ´ 1) vector with the summations needed for the coeffi-
cients (the matrix product doing the summations for us) and
then ./div divides element-by-element by the divisors we

30 Spectroscopy Europe 12/4 (2000)

TONY DAVIES COLUMN

1000 1500 2000 2500
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5. As Figure 3 using 100 pairs of Fourier
coefficients; the original spectrum (black) is almost
completely covered by the reconstructed spectrum
(red).

1000 1500 2000 2500
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-3

Figure 6. As Figure 4 using 100 pairs of Fourier
coefficients; note that the log1/R scale is ´10–3.

1000 1500 2000 2500
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3. The original (black), reconstructed (red),
tilted (blue) and difference spectra using 20 pairs of
Fourier coefficients for the reconstruction of the
spectrum.

1000 1500 2000 2500
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4. The difference spectrum plotted on its
own scale using 20 pairs of Fourier coefficients for
the reconstruction of the spectrum.

have set up in div. The operators .*
and ./ are useful. If matrices A and B
have the same size then A .* B is the
matrix we get by multiplying each ele-
ment of A by the corresponding ele-
ment of B, much simpler than the full
matrix product A*B. Similarly ./
results in element-by-element division.

The FT is complete! One remark
worth making is that the coefficients
we just calculated are actually the result
of a least squares fit. Those who
remember the formula (X¢ X)–1 X¢y for
a least squares fit (all of you I’m sure)
might wonder where the first bit of this
equation has gone. In fact X¢ X is a
diagonal matrix, with the elements of
div on the diagonal, so the expression
simplifies. The standard formula would
give the same result, after wasting an
imperceptible amount of time multi-
plying two 700 ´ 700 matrices together
and inverting the result.

% invert the transform
% make unrequired coeffi-
cients 0
fc(fcs:k)=0;

These are the high order a coefficients

fc(k+fcs:n)=0;

These are the high order b coefficients

xfit=X*fc; % matrix is 700
x 1

“xfit” is the reconstructed spectrum
using the specified number of pairs of
Fourier coefficients.

% Un-tilt the spectrum

xfits=xfit’+e’; % matrix
is 1 x 700 row % vector

We just add what we subtracted
from the original spectrum

ds=e1-xfit; % matrix is
700 x 1

“ds” is the difference spectrum to show
how well we have reconstructed the
spectrum.

plot(w,ds,’g’);

We plot the difference spectrum and
then the reconstructed spectrum on the
same plot. Figures 2 and 3; “g” and “r”
specifies the colours of the lines.

pause
plot(w,xfits,’r’);
hold off
pause

Now we plot the difference spec-
trum on its own scale in a new plot;
Figure 4.

figure
plot(w,ds,’m’);

For this first example we deliberately
chose a small number of Fourier coeffi-
cients. A more appropriate choice
would be 100. This produces the plots
shown in Figures 5 and 6. The errors
are small but we have achieved a 70%
reduction in the size of the data.

In the third part we will make use of
our Fourier transform in a novel way,
which will introduce some further
wonders of matrix algebra.

References
1. A.M.C. Davies, Spectrosc. Europe

12(2), 24 (2000).
2. J.W. Cooley and J.W. Tukey,

Maths. Comput. 19, 297 (1965).
3. A.M.C. Davies, Spectrosc. Europe

11(6), 24 (1999).
4. F.G. Giesbrecht, W.F. McClure

and A. Hamid, Appl. Spectrosc. 35,
210 (1981).

Spectroscopy Europe 12/4 (2000) 31

TONY DAVIES COLUMN

http://www.spectroscopyeurope.com/TD_12_2.pdf
http://www.spectroscopyeurope.com/TD_11_6.pdf

