
Introduction
The last four decades have seen a tremen-
dous growth in the application of surface 
analysis methods in fields as diverse 
as metallurgy, corrosion, catalysis, poly-
mer technology and microelectronics, to 
name but a few. One area that has bene-
fited enormously from these techniques 
is the field of adhesion science; in other 
words the reasons why materials stick to 
each other! Before justifying this state-
ment, a few words about surface analysis 
methodologies are in order. Techniques 
which provide a surface-specific chemi-
cal analysis are often based around elec-
tron or ion spectroscopies and, although 
there are many such techniques, the 
ones which are most widely used and 
most commercially developed are X-ray 
photoelectron spectroscopy (XPS), Auger 
electron spectroscopy (AES) and time-of-
flight secondary ion mass spectrometry 
(ToF-SIMS). These techniques are fully 
described in recent text books,1–3 and 
the intention is not to describe them in 
any detail in this article, merely to pick 
up on important points relevant to adhe-
sion science as required. Suffice to say at 
this point that the techniques use X-ray 
photons (XPS), a finely focussed electron 
beam (AES) or a beam of monoatomic 
or polyatomic ions (ToF-SIMS) to yield an 
analysis by electron spectroscopy (XPS 
and AES) or mass spectrometry (ToF-
SIMS) that emanates from the outer few 
nanometres of the solid sample under 
examination. This is particularly useful in 
the examination of commercial formula-
tions that contain low concentrations of 
small molecules. Such molecules may 
segregate as very thin layers at interfaces 
to enhance adhesion or act in a deleteri-
ous manner to bring about failure.
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It is this surface sensitivity that makes 
these techniques so attractive to the 
adhesion scientist, as the forces respon-
sible for adhesion in, for instance a 
structural adhesive bond in an aircraft, 
operate at only very short length scales, 
typically of the order of 1 nm. Thus, in 
principle, surface analysis should be able 
to identify the chemistry at an interface 
that is responsible for adhesion, and in 
the most advantageous cases reverse 
engineer the interphase chemistry in 
order to provide insight into the required 
durability, toughness and so forth in the 
component. Approaching the interphase 
region is an extremely complex proce-
dure, but examples of how this can be 
achieved will be given in a later section 
of this article. If one was to survey the 
applications of surface analysis in adhe-
sion research it would be clear that there 
are three specific areas in which XPS, AES 
and ToF-SIMS have been applied. First, 
there is the examination of a substrate 
surface prior to bonding or coating and 
the correlation of its surface chemistry 
with subsequent performance. Second, 
the forensic analysis of the failure of 
interfaces of adhesive bonds, organic 
coatings or polymer matrix composites 
can tell one much about the cause of 
failure and sometimes indicate the bond-
ing mechanism itself. Finally, there is the 
use of surface analysis to understand the 
molecular mechanisms of adhesion. In 
a recent review the author of this article 
described the latter category as the holy 
grail of adhesion research, as it points 
the way to the control of interface chem-
istry to obtain specific properties.4 In the 
following sections examples are provided 
of the manner in which surface analysis 
can be used in order to help advance 

our understanding of adhesion phenom-
ena.

Control of surface 
characteristics prior to 
bonding
One of the most basic requirements for a 
good bond between a substrate and an 
adhesive is that the substrate is free from 
contamination that may interfere with the 
formation of a good bond between the 
substrate and the mobile organic phase. 
An interesting example of the manner in 
which XPS can be of use in such a situ-
ation is the following case history, taken 
from the aerospace industry, relating to 
the bonding of composite surfaces which 
had been protected following manufac-
ture by the use of peel ply release films. 
These films are removed immediately 
prior to bonding; easy removal is facil-
itated by the presence of low surface 
energy release agents, in this case based 
on fluorocarbon chemistry. Although they 
allow the easy removal of peel plies any 
residual release agent remaining on the 
bonding surface will obviously compro-
mise the integrity of the adhesive bond. 
The data of Figure 1 show the rela-
tionship between the concentration of 
release agent remaining on the surface, 
following various cleaning regimes, prior 
to bonding against, on the left-hand 
side (LHS) axis, the relative strength of 
the bond fabricated from components 
cleaned in this manner. The right-hand 
side (RHS) axis indicates how the failure 
interface passes through the adhesive 
when there is no release agent present 
and gives rise to a strong joint but as the 
amount of release agent increases so the 
joint strength falls and the failure inter-
face passes to the adhesive/substrate 
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adhesion promoters when incorpo-
rated into the formulation of a commer-
cial structural adhesive. These images 
were acquired by recording small area 
(100 μm diameter X-ray spot size) XPS 
spectra and rastering the specimen stage 
of the spectrometer over a 3 × 3 mm area 
in steps of 120 μm. Once the data set 
of high-resolution spectra and an XPS 
survey spectra at each pixel point has 
been acquired, retrospective images of 
the type displayed in Figure 2 can be 
constructed. Figure 2 shows the comple-
mentary mirror image interfacial fail-
ure surfaces, correlation between the 
coloured chemical maps and the opti-
cal images of the failure surfaces (LHS 
of Figure 2) allows the failure to be char-
acterised as interfacial with complemen-
tary carbon and aluminium images being 

seen. The carbon images show that there 
are very small amounts of carbon on the 
metallic substrate after failure and that it 
is not uniform. In a similar vein, the sili-
con maps show that residues of the orga-
nosilane adhesion promoter are seen 
in one part of the failure but the other 
apparently show no adhesion promoter. 
The reason for this is not clear but one 
possibility is segregation occurring in the 
adhesive following application. As a full 
set of XPS spectra are available at each 
pixel point, it is possible to process the 
data using conventional XPS procedures 
to yield compositional maps, contour 
lines of thin layers such as metal oxides 
or (as in this example) residual organic 
overlayers on metallic surfaces and so 
forth. The spatial resolution of this exam-
ple is not high but the best attainable in 
this mode of operation is c. 15 μm.

The presence of vanishingly thin 
layers of a single component of a multi-
component formulation at a substrate 
surface is not unusual, although they 
can be very difficult to track down, as 
the following example of the failure of 
a UV cured paint coating on galvanised 
steel will show. The coating in question 
showed good dry adhesion but as soon 
as it was exposed to moisture, adhe-
sion loss quickly occurred. XPS spectra, 
this time in the standard area integrat-
ing mode of approximately 10 mm2, from 
the uncoated galvanised steel substrate 
and the steel and coating interfacial 
failure surfaces are shown in Figure 3.5 
Superficially the XPS survey spectra of 
the bare steel [Figure 3(a)] and the steel 
failure surface [Figure 3(b)] look very 
similar, indeed the carbon concentration 
on the failure surface is actually lower 
than on the bare steel, but on the fail-
ure surface a small amount of fluorine is 
seen (F1s at c. 686 eV). The chromium 
is the result of a Cr(VI) surface treatment 
and the aluminium is an addition made 
to the zinc bath to prevent the formation 
of a brittle Fe–Zn intermetallic. The coat-
ing failures surface [Figure 3(c)] shows 
no sign of fluorine, but there is evidence 
of the presence of chlorine. The radcure 
coating formulation includes a cure 
initiator, part of which is a phosphorus 
hexafluoride anionic component. The 
fluorine on the metal surface is diagnos-
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interface. Although this is all very intui-
tive, it was not until the advent of XPS 
that it was possible to design a quality 
control process based on the amount 
of release agent remaining rather than 
the detailed specification of the cleaning 
process itself.

Forensic analysis of failure 
interfaces
As indicated above, the locus of failure 
often provides a clue to the chemical 
nature of the failure and any shortcom-
ing in the production process. The XPS 
images of Figure 2 are taken from the 
failure surfaces of a failed adhesive joint 
tested in a wedge cleavage geometry 
(Boeing Wedge Test). This work is part 
of an ongoing programme to investi-
gate the mode of action of organosilane 
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Figure 1. Correlation between residual release agent on a composite bonding surface and joint 
strength (LHS axis). As the strength reduces so the locus of failure changes from a cohesive fail-
ure in the adhesive (RHS axis and upper left schematic) to an interfacial failure between compos-
ite and adhesive (upper right schematic).

Figure 2. XPS images of the fracture surfaces taken from adhesively bonded aluminium using a 
structural epoxy adhesive with an addition of 1% organosilane adhesion promoter. (Courtesy of 
Dr M.-L. Abel, University of Surrey.)
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tic of this component and ToF-SIMS indi-
cated a high concentration of this ion in 
the negative SIMS spectrum. The reason 
for failure thus becomes clear; the anionic 
part of the cure package has diffused to 
the interface to form a segregated layer 
and the interface between this and the 
paint film itself is very susceptible to 
hydrodynamic displacement. The solu-
tion to the problem was to reduce the 
amount of curing agent in the formula-
tion; the mechanical properties of the 
film were not affected but the adhe-
sion in damp conditions was improved 
dramatically.

Direct examination of 
interface chemistry
Although it is relatively straightforward to 
examine failure interfaces in the manner 
described above, and this may tell us 
a great deal about the causes of adhe-
sion failure, it will not necessarily provide 
information regarding the nature of the 
interfacial chemistry of adhesion. With 
the current requirement to reduce Cr(VI) 
emissions, there has been much effort 
to identify an environmentally friendly 
pretreatment for the adhesive bonding 
of aluminium for aerospace applications. 
One strong candidate is the family of 
adhesion promoters based on organosi-
lane chemistry and surface analysis has 
proved to be extremely useful in identi-
fying the manner in which such mole-
cules interact with aluminium surfaces to 
provide a durable bond. Figure 4 shows 
high-resolution positive ToF-SIMS spectra 
of an aluminium surface treated with an 
organosilane [γ glycidoxypropyl trimeth-
oxysilane (GPS)] primer. The intense 
peak at m/z = 70.9521 u6 is assigned to 
the fragment AlOSi+ and is related to the 
formation of a covalent bond between 
the silane and the aluminium surface 
which occurs in the manner shown in 
Structure 1.

The alternative to using an adhesion 
promoter as a primer pretreatment is 

to incorporate the organosilane into 
the product formulation. Such a prod-
uct may be a paint or an adhesive, but 
care must be taken in extrapolating the 
results obtained with a primer to the 
inclusion of the same organosilane in a 
formulation. Although GPS reacts in the 
manner described above with aluminium 
when used as a primer, when added to 
a formulation this specific interaction is 
not observed in the ToF-SIMS spectra of 
the fracture surface. A different silane, 
γ aminopropyl triethoxysilane (APS), 
when tested in a high relative humidity, 
does show the presence of the diagnos-
tic AlOSi+ ion on the failure surfaces as 
shown in Figure 5.

In recent years a number of methods 
have been developed in the author’s 
laboratory to prepare specimens to 
probe the interface chemistry directly.4 
One method that shows much prom-
ise is the use of a histological microtome 
to cut ultra-low angled cross-sections 
through polymer–polymer and poly-
mer–metal foil interfaces. The general 
principle relies on the use of specially 
manufactured angle blocks which enable 
a cut to be taken almost parallel to the 
specimen surface. By “almost parallel” an 
angle of between 0.003° and 2.0° can 
be chosen by using blocks with out of 
parallel surfaces in the range of 25 μm to 

(a)

         
(b)

          
(c)

Figure 3. The failure of a radcure coating 
applied to galvanised steel. (a) uncoated 
steel, (b) steel interfacial failure surface, (b) 
coating interfacial failure surface.

Figure 4. High-resolution positive ToF-SIMS spectrum of aluminium treated with an organosilane 
adhesion promoter. N.B. Total width of spectrum is c. 0.3 u.
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about 1 mm. By using small spot XPS or 
ToF-SIMS on the sample it is possible to 
reconstruct a depth profile with a depth 
resolution of better than 10 nm.7 An 
example of this type of work is featured in 
the false colour ToF-SIMS image of Figure 
6. The specimen is a duplex organic coat-
ing of a poly(vinylidene fluoride) (PVdF) 
topcoat applied over a poly(urethane) 
(PU) primer. The field of view is 
500 × 500 μm and the taper has been 
cut at 0.03°, which means the difference 
in height between the top and bottom 
of the field of view is about 250 nm. The 
false colour image allows the regions of 
PU (green) to be clearly identified; the 
characteristic ions of the PVdF region are 
identified in red but as there is also an 
acrylic copolymer added to the formula-
tion (blue) the PVdF appears beige. The 

important observation from this image is 
the segregation of a layer of acrylic (seen 
as a blue band across the middle of the 
micrograph) between the two layers of 
paint. The purpose of this component 
in the PVdF topcoat is to enhance adhe-
sion to the primer and it clearly achieves 
this aim by the formation of a layer some 
50 nm thick between the two paints.8

Conclusions
It is hoped that this brief article has 
demonstrated the important role that 
surface analysis has to play in adhe-
sion research. The examples used have 
featured XPS and ToF-SIMS as these 
methods are readily applicable to poly-
mers, and the segregation of small mole-
cules to interfaces, which will invariably 
be an important component when adhe-
sives and organic coatings are concerned! 
AES, although not specifically mentioned 
in this article, has an important role to 
play in the analysis of metallic substrates 
prior to bonding or the analysis of the 
metal interfacial surface of a failure at 
high spatial resolution.9
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Figure 6. Negative ToF-SIMS image of an 
ultra-low angle microtome section of a PVdF/
PU paint film. The field of view is 500 μm 
which corresponds to a height difference of 
250 nm from top to bottom. The ions used 
to construct this false colour image were: 
poly(urethane) m/z = 66 u: C3H2N2

–, 
poly(vinylidene fluoride) m/z = 19 u: F–, 
acrylic copolymer m/z = 85 u: C4H5O2

–. The 
blue band clearly identifies the segregation of 
the acrylic copolymer to the interface 
between PVdF and PU layers. The presence 
of this component in the PVdF film gives 
characteristic beige colouration to this layer. 
(Courtesy of Dr S.J. Hinder, University of 
Surrey.)

Figure 5. Positive ToF-SIMS spectra taken 
from the metal failure surface of adhesively 
bonded aluminium. The epoxy adhesive 
used contained 0.5% APS in the formula-
tion. (Courtesy of Dr M.-L. Abel, University of 
Surrey.)
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