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Introduction
United Nations (UN) projections esti-
mate that the world’s population will 
be around 9.6 billion by 2050. Current 
projections indicate that feeding such a 
huge population would require dramat-
ically increasing (~70 %) overall food 
production by 2050. To achieve this goal, 
the agricultural productivity in developing 
countries such as Brazil would need to 

increase significantly in order to provide 
more productive, sustainable and inclu-
sive food systems to fight poverty and 
hunger in this massive population. One 
of the most important factors required to 
accomplish this task is the understand-
ing of soil fertility in order to manage it 
most effectively.

To achieve this, millions of soil analy-
ses are performed every year around the 

world to increase crop yields. In Brazil, 
approximately 4 million soil fertility anal-
yses are performed per year, and soil 
organic matter (SOM) is one of the main 
factors that support land management. 
However, the two main conventional 
methodologies to determine the SOM 
(Walkley–Black and dry-combustion) 
are time-consuming and expensive, and 
hence are not suitable for use on a large 

Figure 1. Comparison between the wet and vis-NIR spectroscopic methodology for SOM analysis.

www.spectroscopyeurope.com
https://orcid.org/0000-0001-8580-0100
https://orcid.org/0000-0003-4808-8446
mailto:rjpoppi%40unicamp.br?subject=
https://orcid.org/0000-0003-2994-0787


SPECTROSCOPYEUROPE 15

ARTICLE

www.spectroscopyeurope.com

 VOL. 31 NO. 4 (2019)

scale. Also, the Walkley–Black method is 
damaging to the environment, generat-
ing residues that require treatment, and, 
therefore, is not suitable for sustainable 
agricultural practices.1

As an alternative to the traditional 
methods, visible-near infrared (vis-NIR) 
spectroscopy can provide fast, low-cost 
and accurate results for SOM analyses 
in an environmentally friendly way. Also, 
the methodology is non-destructive and 
does not require additional sample prep-
aration. A comparison between the two 
methodologies is illustrated in Figure 1.

However,  v i s -NIR spec t ra  a re 
composed of wide and superimposed 
bands and thus the application of this 
type of spectroscopy in SOM determi-
nations requires the development of 
multivariate regression models capable 
of correlating these bands with the SOM 
reference values. Also, the soil matri-
ces are very heterogeneous, complex 
and require a tremendous number of 
samples to create robust vis-NIR cali-
bration models. Due to these prob-
lems, machine learning methods with 
high generalisation power have been 
employed in the development of the 
models. Among the machine learning 
methods that are suitable, we highlight 
the support vector machine (SVM).2

Support vector machine
Support vector machine is a kernel-based 
machine learning method proposed by 
Vladimir N. Vapnik, which uses implicit 
mapping of the input matrix (vis-NIR 
spectra) into a high-dimensional feature 
space defined by a specific kernel func-
tion; in this case the radial basis func-
tion (RBF):2
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In the feature space, a linear hyper-
plane is built with the maximal margin 
between the support vectors of each 
class, and this hyperplane is set up 
to solve the initial separation prob-
lem. The SVM can also be extended 
to regression problems by adding and 
subtracting a positive k number in the 
yi reference value, creating a positive 
(yi + k) and negative class (yi – k). In 
this situation, the optimal separation 
hyperplane will pass by the original 

values of yi, because the best separa-
tion will be yi + 0. As in linear regres-
sion models, the y prediction value can 
be estimated using a linear regression 
function:

	 y = w · K(x) + b	 (2)

where w and b are the slope and offset 
of the regression line. The optimal w and 
b are obtained by minimising Equations 
3 and 4.
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where e is the sensitive parameter which 
represents the tolerated error and C is 
the cost parameter, which controls the 
influence of each individual support 
vector. The slack variables xi and xi

* are 
introduced to account for samples that 
do not lie in the e-sensitive zone.3

During this process the combina-
tion of two parameters must be opti-
mised, the cost parameter (C) already 
described and the RBF kernel parame-
ter (g). g is the regularisation parameter 
of the RBF function, which controls the 
width of this function. In order to reduce 
the time required to find this optimum 
combination, Bayesian optimisation 
can be used. The Bayesian optimisation 
algorithm attempts to minimise the root 
mean square error of cross validation 
(RMSECV) in a specific domain for each 
parameter; in this case [10–3 to 103] for C 
and g. The algorithm selects the combi-
nation of C and g points that provides 
the greatest potential improvement of 
RMSECV.4 SVM modelling and Bayesian 
optimisation were implemented in 
Matlab R2016b with the Statistics and 
Machine Learning Toolbox 11.0.4

Materials and methods
In order to obtain a spectral library that 
represents the major producing regions 
of Brazil, 42,471 soil samples from 
several regions of Brazil were collected. 
The SOM reference analyses were based 
on the Walkley–Black method. These 

analyses were performed in collabo-
ration with the IBRA Laboratory, Brazil, 
that holds a certification of proficiency 
from the Brazilian Agricultural Research 
Corporation (Embrapa Soils) and is 
accredited to ISO/IEC 17025:2005.

Before the vis-NIR spectra acquisi-
tion, the samples were oven dried at 
40 °C for 48 hours, a rubber mallet was 
used to break the soil clusters and the 
granule size was controlled by a sieve 
(Ø < 2 mm). The spectra were obtained 
using a vis-NIR spectrometer custom-
ised for this determination, called 
SpecSoil-Scan (Speclab Holding S.A., 
Campinas - SP, Brazil). This instrument 
can analyse 40 soil samples per batch 
and the spectral range is 432–2448 nm, 
with a spectral resolution of 3.3 nm.

A principal component analysis (PCA) 
model was applied to the spectral data 
set to find outliers. Samples with high 
values of Hotelling T2 and residuals in 
spectral data (Q-statistics) at a signifi-
cance level of 5 % were considered 
outliers. The Hotelling T2 is related to 
leverage, which measures the distance 
of the sample from the centre of the data 
and Q residuals represent the unmod-
elled vis-NIR spectra.5

Representative samples were selected 
for development and validation of the 
models, resulting in 28,314 samples for 
the calibration set and 14,157 for the vali-
dation set.

Results and discussion
The original vis-NIR spectra of all soil 
samples are shown in Figure 2a, where 
the mean spectrum is represented by 
the black line. The NIR spectra contains 
useful information related to the SOM, 
due to absorptions in the C−C, C=C, 
C−H, C−N, N−H and O−H chemical 
bands. In the visible region, information 
on the SOM can be determined from 
absorption bands due to chromophores 
and darkness of the soil.6

To reduce baseline variation and 
spectral noise, the vis-NIR spectra were 
preprocessed by Savitzky–Golay smooth-
ing and first derivative, with a window size 
of 11 points.7 The preprocessed spec-
tra are shown in Figure 2b, where the 
major variations in the absorption bands 
at 400–600, 1100, 1400, 1800–2000 
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and 2200–2400 nm are highlighted, 
common to most soil samples.6

The three main absorptions bands 
are in the region of 500–650 nm, 
1400 nm and 1900 nm. The absorptions 
at 500–650 nm can be associated with 
minerals that contain iron and the band 
at 1400 nm and 1900 nm can be associ-
ated with the OH group. The absorption 
band at 1100–1150 nm can be associ-
ated to aromatics and C–H stretch, and 
at 2200–2500 nm they are mainly due 
to vibrations involving metal–OH.6

The SVM model was built using the 
calibration samples and the choice of 
the optimal combination of C and g 
values was performed as described 
above. To avoid overfitting in the regres-
sion model, the validation set was 
considered a set of unknown samples 
and these samples had no influence on 
the choice of C and g parameters of the 
SVM model.

The scatter plots showing the refer-
ence versus predicted values by the 
SVM model are shown in Figure 3. 
Due to the high number of samples 
a colour bar containing the recur-
rence of the predicted values for each 
reference value was inserted in this 
plot. The SOM reference content in 
both sets were distributed along the 
range evaluated. The R2

cal, R
2
val, RMSEC 

and RMSEP were close indicating the 
concordance between the calibration 
and validation sets. In other words, 
the SVM regression model adequately 

modelled the huge diversity of soils of 
the spectral library without overfitting 
the model.

Analysing the recurrence of the 
predicted values in Figure 3, it is possible 

to conclude that most of the samples 
were predicted with SOM values close to 
the reference ones. Only a few samples 
(dark blue) had the predicted values far 
from the reference values.

Figure 2. Original vis-NIR soil spectra (a) and preprocessed spectra (b).

Figure 3. Plot of reference versus predicted values by SVM model in calibration (a) and valida-
tion (b) sets.
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This fact can also be observed in 
Figure 4, which shows the histograms 
of the prediction errors in calibration 
and validation sets. The histograms 
show that most of the samples 
were predicted with residues of up 
to 2 × RMSE in both sets, while few 
samples were predicted with higher 
residues.

Conclusions
The support vector machine algorithm 
was successful in dealing with an exten-
sive and complex soil spectral library to 
determine SOM content. Brazil’s soils 
are very diverse and heterogeneous 
with regards to chemical composition 
and soil organic matter content. The 
robustness presented by the proposed 
methodology involving vis-NIR spec-
tra and machine learning has created 
high expectations for the possibility of 
mitigating/eliminating the use of heavy 
metal reagents in soil fertility analysis. 
Also, the methodology has potential to 
be used as a replacement for the tradi-
tional method in the future. Knowledge 
of soil fertility, supported by a green 
analytical methodology, could pave the 
way for increasing sustainable agricul-
tural productivity.
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