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The objective of this column is to provide easy-to-understand examples of sampling errors. Prompted by recent participa-
tions and presentations at on-line conferences and meetings, we believe there is a need for a more fulfilling introduction and 
exemplification of the concept and real-world consequences of committing “sampling errors”. WHAT is a sampling error? WHAT 
is the result of sampling errors? WHAT can we do about sampling errors? These are welcome topics for a series of sampling 
columns! The point of departure will be in the Theory of Sampling and in the near infrared spectroscopy analysis and pharma 
application sectors, but the focus will be developed to be more general, so that readers can carry-over to other scientific and 
application areas of interest.

Introduction: what 
students in analytical 
chemistry learn about 
sampling errors
It is very instructive to start with how the 
topic of sampling errors is seen from the 
point of view of where everything ends 
up: analysis. What is the point of view 
from analytical chemistry?

At the undergraduate level, students 
are taught that there are seven basic 
steps involved in an analytical chemical 
analysis. These are i) method selection, 
ii) sample acquisition, iii) sample prepa-
ration, iv) sample analysis, v) calculation 
and vi) interpretation of the results… 
and vii) preparation of a professional 
report. The second step in this chemical 

analysis pathway is known as sampling. 
Sampling is defined in a frequently 
adopted analytical chemistry book as 
“the process of collecting a small mass 
of a material whose composition accu-
rately represents the bulk of the mate-
rial being sampled.”1 In other words, 
the aliquot analysed in the lab must 
have the same composition as the bulk 
material from which it was obtained. 
One notes that there is no help here 
as to how to acquire a representative 
sample and a representative analytical 
aliquot.

Students are taught that all measure-
ments in an analysis have an associ-
ated error, and for this reason the “true” 
or “exact” value can never be obtained. 
However, with knowledge of the differ-
ent types of error and their sources, 
it is possible to reduce and estimate 
the magnitude of the error effects. 
Although there are many sources of 
analytical errors, they can traditionally 
be classified into three major types: 
systematic (or determinate) errors, 
random (or indeterminate) errors and 
gross errors.

Systematic errors
Systematic errors cause the mean of a 
set of analytical data to differ from the 
accepted value, causing all the results 
of a series of replicate measurements 
to be too high or too low. The presence 
of systematic errors will affect the accu-
racy of the analysis. Systematic errors 
originate from known sources or at least 
from sources that can be identified, and 
the magnitude of the systematic errors is 
reproducible from one measurement to 
another. Systematic errors can be classi-
fied into three types, according to their 
source: instrumental error, method errors 
and personal error.

Systematic-instrumental errors include, 
for example, changes of the original cali-
bration, changes of the calibration due 
to the difference in the temperature for 
what it was intended for and/or changes 
of the glassware walls themselves during 
the drying process in an oven. Examples 
of glassware include pipets, volumetric 
flasks and burettes. These examples are 
illustrative, but not exhaustive.

Systematic-method errors are due to 
limitations of the analytical method itself. 
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Reactions and reagents are examples 
of this type of error, i.e. they may be 
caused by an incomplete reaction and/
or side reactions. Common examples 
would be lack of specificity or curtailed 
performance of a reagent to perform its 
full role in a reaction. This is, for exam-
ple, the case when decomposition of 
an unknown sample fails to happen 
due to a reagent in the reaction. Thus, 
during a titration the extra titrant needed 
to produce a change in colour indicator 
after the equivalence point is an example 
of this type of error. Systematic-method 
errors are the most difficult to detect and 
correct because its correction will require 
a change of some, or all parts of the 
analytical method itself.

Systematic-personal errors are, for 
example, due to poor attention to impor-
tant or critical aspects of the analysis 
context by the analyst. This may include 
poor judgement, carelessness and even 
lack of training of the analyst. Analytical 
bias, i.e. the tendency to skew estimates 
in the direction that favours the antici-
pated result, is considered an effect of 
systematic-personal errors in the analy-
sis.2

Random errors
In analytical chemistry it is assumed that 
random errors cause analytical data to 
be scattered pretty much symmetrically 
around a mean value, and this error has 
the same probability of been positive 
or negative. The presence of random 
errors will affect the precision of the 
analysis. The sources of random errors 
are due to uncontrollable variables and 
because of the inability to identify their 
sources, they cannot be completely 
eliminated. A plot of relative frequency 
vs deviation from the mean, for a large 
number of individual errors, is known 
as a Gaussian curve or Normal Error. A 
Gaussian distribution assumes that only 
random errors are present in the anal-
ysis, i.e. that all systematic errors have 
been identified and corrected for. This 
critical assumption allows an appropri-
ate statistical treatment of the analytical 
data obtained that will facilitate evalu-
ation of the magnitude of this error—
which in turn allows a bias correction to 
be performed.

Gross errors
Although not as common as random or 
systematic errors, gross errors are char-
acterised by being “large”, which can 
result in an analysis being either much 
higher or much lower than the “true” 
value. The sources of gross errors are 
typically considered to be human errors; 
gross errors will manifest themselves as 
outliers in a series of replicate measure-
ments.

Through the coverage of these errors 
in general analytical curricula, and in the 
relevant analytical chemistry laboratories, 
the need for high accuracy and precision 
is constantly emphasised at the under-
graduate level. However, exposure to 
the preceding sampling process is mini-
mal. Students are often provided with 
an unknown sample, but the preced-
ing sampling step is practically always 
skipped.

What has been learned 
about sampling errors: 
nothing so far
Within analytical chemistry, the before 
analysis realm is conveniently “left 
out”—barring gross errors, which most 
definitely do not equate with the realm 
of sampling errors in the TOS—it is for 
others to take care of whatever contribu-
tions there are to the total sampling + 
analysis error management. Traditionally, 
this responsibility falls to the entity in 
charge of sampling in the form of more-
or-less trained personnel, and the differ-
ence is critically important. For untrained 
personnel, sampling errors do not exist, 
while properly TOS-trained person-
nel know very well that the effects 
from untreated sampling errors always 
inflate the total analytical error budget 
(sampling + analytical error budget) by 
up to one or two orders-of-magnitude! 
Neglecting the effects from sampling 
errors is tantamount to a breach of due 
diligence when seen in the light of the 
complete “from-lot-to-aliquot” pathway.

Implications
It is, in general, not appreciated that 
there is both a bias issue within the 
analytical domain, which can be brought 
under complete control, however, and 
a sampling bias, which cannot be 

addressed in a similar fashion as the 
analytical bias can. In fact, the sampling 
bias cannot be corrected for by any post-
analysis approach (data analytical, statis-
tical, other). A sampling bias can only 
be affected by expressly eliminating 
all so-called “Incorrect Sampling Errors 
(ISE)”. ISE has been treated in various 
previous columns, and in the dedicated 
TOS literature, and will be revisited in this 
and later columns. But first WHAT are, 
and WHAT can be done about sampling 
errors?

Clearly, one must seek refuge within 
the TOS. Although often claimed to be 
complex, the TOS can be in fact be made 
accessible from a less in-depth theo-
retical level. For example, even though 
the TOS identifies nine sampling errors, 
they originate from only three sources: 
the material (which is always hetero-
geneous, it is only a matter of degree), 
the sampling equipment (which can be 
designed either to promote a representa-
tive extraction, or not) and the sampling 
process itself (even correctly designed 
equipment can be used in a non-repre-
sentative manner).3

TOS basics on sampling 
errors
At the outset, the reader is referred to 
References 4–6. It is recommended 
that these are read together with, 
indeed before, the present column 
to get the best foundation for what is 
laid out below. Pierre Gy, founder of 
the TOS, took his point of departure 
for developing the TOS in the material 
phenomenon of heterogeneity—before 
even starting to solve the obvious main 
question “how to sample?” Thus, Gy 
identified all sampling errors that repre-
sent everything that can go wrong 
in sampling, sub-sampling (sample 
mass reduction), sample prepara-
tion and sample presentation—due to 
heterogeneity and/or inferior sampling 
equipment design and usage. He 
meticulously worked out how to avoid 
committing such practical errors in the 
design, manufacture, maintenance and 
operation of sampling equipment and 
elucidated how their adverse impact 
on the total accumulated uncertainty 
could be reduced as much as possible 
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when sampling in practice. When all 
this was developed into his coherent 
TOS, the concept of a sampling error 
(SE) became the key element, in as 
much as answering the fundamental 
question “how to sample?” pretty much 
became synonymous with “how can 
we eliminate and/or reduce sampling 
error effects on sampling performance. 
Being able to identify sampling errors is 
90 % of the way towards representative 
sampling. These sampling errors also 
occur in process analytical technologies 
(PAT) applications as discussed in depth 
in previous publications.7,8

A crucial distinction: error 
vs uncertainty
Two issues underlie everything regarding 
“representativity”, the second of which 
is intimately connected with sampling 
errors—but, first, a related fundamental 
prerequisite in the TOS.

It is not possible to ascertain the 
representativity status of a specific 
sample or analy tical aliquot from 
any observable feature related to the 
sample/aliquot itself. The sample 
could be representative, or it could be 
miles away—one will never know if the 
sample is removed from its origin. It is 
only possible to define, and document, 
representativity as a characteristic of the 
sampling process.9 Everything depends 
on the sampling equipment, how it is 
designed, used and maintained. This is 
where representativity can be forfeited. 
This is all related to which sampling 
errors have not been suitably elimi-
nated and/or reduced, i.e. how one is 
able to recognise and how one is able 
to counteract sampling error effects in 
the sampling process. This is where 
and why sampling errors attain key 
prominence. One can state that analyti-
cal results depend on the preceding 
sampling and sub-sampling processes: 
only bona fide representative sampling/
sub-sampling processes lead to a repre-
sentative analytical aliquot (“the process 
of collecting a small mass of a material 
whose composition accurately repre-
sents the bulk of the material being 
sampled”), while anything else will 
leave the aliquot affected by a significant 
sampling bias ... of unknown magnitude 

(it cannot be estimated, as it changes its 
magnitude with every attempt to quan-
tify it). Accuracy w.r.t. the original mate-
rial from which a primary sample was 
extracted will be unobtainable. Clearly, 
focus is critically on sampling errors 
(“incorrect” as well as “correct”); for a 
more fully developed introduction the 
reader is referred to Esbensen’s intro-
ductory book.3 Here, focus will be on 
illustrating a first set of sampling error 
distinctions that will start one along a 
path to deeper understanding.

It is necessary to speak with the 
outmost clarity: a crucial distinction 
needs to be made: uncertainty vs error 
(Gy,10 Pitard11).
Error: Difference between an observed 
or calculated value and the correspond-
ing “true value”; variations in meas-
urements (e.g. analytical results) , 
observations or calculations which are 
due to mistakes or to uncontrollable 
factors. Sampling errors are not called 
sampling uncertainties!
Uncertainty: Lack of sureness about 
someone or something; something that 
is not known beyond doubt; something 
not constant. Without a certain amount 
of relevant competence (in the TOS), 
one would likely first listen to statisticians, 
who prefer the term uncertainty.

The repeatabi l i t y study of ten 
performed in near infrared (NIR) spec-
troscopy, for example (see section 
further below), provides an estimate 
of uncertainty. The repeatability (short-
term precision) of a method may be 
obtained by obtaining six consecu-
tive spectra of the same sample.12 The 
standard deviation of the predictions 
provides an estimate of an uncertainty 
in the predictions. This uncertainty 
(random error) is unavoidable, it will 
always be part of analytical methods.

However, Pierre Gy has the following 
to say: “With the exception of homog-
enous materials, which only exist in 
theory, the sampling of particulate 
materials is always an aleatory a opera-
tion. There is always uncertainty, regard-
less of how small, between the true, 

aAleatory: accidental, happening by 
chance, unintentional, unexpected

unknown content of a lot aL and the 
true unknown content of the sample 
aS. A vocabulary difficulty needs to be 
mentioned: tradition has established 
the word error as common practice, 
though it implies a mistake that could 
have been prevented, while statisti-
cians prefer the word uncertainty which 
implies no responsibility. However, in 
practice, as demonstrated in the TOS, 
there are both sampling errors and 
sampling uncertainties. Sampling errors 
can easily be preventatively minimised, 
while sampling uncertainty for a pre-
selected sampling protocol is inevitable. 
For the sake of simplicity, and because 
the word uncertainty is not strong 
enough, the word error been selected 
as current usage in the TOS, making it 
very clear it does not necessarily imply 
a sense of culpability.”

With this error definition, here we are 
especially focused on the so-called ISEs, 
which are IDE, IEE, IPE and IWE, see 
Figure 1. They will receive the illustrative 
focus in this column.
	� IDE: Increment Delineation Error
	� IEE: Increment Extraction Error
	� IWE: Increment Weighing Error
	� IPE: Increment Preparation Error
The overarching thing to know about 

ISE forms the backbone of all practi-
cal sampling: if ISEs have not been 
appropriately el iminated/reduced, 
the sampling process is biased. All 
manner of bad things follow from a 
biased sampling process, the most 
important of which is that the ensu-
ing analytical aliquot can never be 
representative of the target material, 
i.e. the game is lost even before one 
starts! What is the meaning of analys-
ing an aliquot that cannot be proven 
to be representative? None—there is 
no meaning!

The first part on any sampling agenda 
is, therefore, to eliminate/reduce suffi-
ciently all ISE, and in order to be able 
to do so, it is imperative to know how 
to correctly identify sampling errors a.o.

Sampling errors: WHAT 
are they?
For definition and full theoretical treat-
ment of all the nine SEs, the reader is 
referred to the scholarly treatises by 
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Gy10 or Pitard.11 Here we shall only, and 
simply, illustrate these definitions and 
show their effects in practice….3 Many 
of these are particularly easy to appreci-
ate in the process sampling realm, see 
Figure 1.

Examples of sampling 
errors in pharma
The drying of a pharmaceutical formula-
tion provides an example of committing 
a sampling error13 in a complex industrial 
production context, Figure 2.

As the drying process starts, the blend 
is expected to have about 25 % (w/w) 
water content. However, a NIR spectro-
scopic method might indicate results of 
54, 31 and 27 % (w/w), much higher 
than the expected level. Figure 2a 
provides a representative illustration of 
this situation where the material with the 
highest water content is located close to 
the bottom of the drying rig, i.e. close 
to where the NIR probe is installed. The 
higher results are related to the high 
heterogeneity of the blend at this drying 
stage. Figure 2b illustrates the blend near 
the end of the drying process, where the 
remaining water is more evenly distrib-
uted throughout the full volume of the 
dryer vessel. The same NIR probe instal-
lation now provides much more accurate 
results because the blend is very close to 
the target 4 % (w/w) water content. The 
volume/mass analysed by the NIR spec-
trometer is now less heterogeneous and 
the analytical probe’s GSE sampling error 
is reduced (GSE is a “Correct Sampling 
Error”, see, e.g., Reference 3).

The distribution of a drug throughout a 
tablet can lead to a similar heterogeneity-
induced sampling error. A tablet could be 
manufactured in a process with a target 
concentration of 10 % (w/w). However, 
the top part of the tablet could have 

Figure 1. Left: archetypal examples of Increment Delineation Error (IDE) (also known as Incorrect Delineation Error). The TOS stipulates that the only 
correct (bias-free) increment delineation of a moving material is a complete across-stream slice (for example across a conveyor belt) or a complete 
cross-sectional volume (in the case of a moving material confined to a duct, e.g. in a pipeline or similar). Various other IDE manifestations resulting 
from i) grab sampling (top panel), “taking only some of the stream all of the time” (centre panel) and “unbalanced slicing” (bottom panel) are also 
illustrated—all contribute to a significant sampling bias. Right: real-world example of a highly unacceptable conveyor belt “sampling”, resulting in a 
highly significant IDE, here accompanied by a concomitant IEE, in that the depth of the IDE-affected slice does not extract material all the way to the 
bottom of the conveyor belt either. IDE and IEE are very often bad fellow-travellers towards a significant sampling bias. Illustration copyright by KHE 
Consulting, reproduced with permission.

Flow

Flow

Flow

Figure 2. A fixed probe location is not necessarily always the right basis for an otherwise well-
performing analytical method, e.g. a NIR probe installed close to the bottom of a drying rig. The 
relevance of the analytical results will vary with the compositional evolution of a drying pharma-
ceutical mixture. With respect to the analyte water content (moisture), segregation heterogeneity 
will influence the accuracy (will create a sampling bias) with respect to the full mixture volume, 
see text for details.
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more drug than the bottom part of the 
tablet.

Figure 3 provides an illustration of 
this situation. A diffuse reflectance 
NIR spectroscopic approach where 
the sensor radiation interacts mostly 
with the top 1 mm of the tablet could, 
for example, indicate a 12 % (w/w) 
drug concentration. However, when 
the tablet is reference analysed (high 
performance liquid chromatography, 
an approach where the entire tablet 
is dissolved and analysed), the drug 
concentration is found to comply 
with the target concentration of 10 % 
(w/w). This is an example of a classical 

IDE—but performed by the probe—
in combination with heterogeneity 
even at the smallest scale of inter-
est in pharma, the scale of a single 
tablet. Thus, many researchers and 
industrial monitoring engineers/tech-
nicians prefer to develop transmission 
NIR methods for tablets that cover the 
entire tablet volume, instead of diffuse 
reflectance methods.

For PAT analysts and 
chemometricians 
especially
A Support Mismatch Error (SME) is possi-
ble, typically when developing calibration 

models for PAT applications. As an exam-
ple, Raman spectra may be obtained to 
characterise a mammalian cell culture in 
an active bioreactor, with the objective of 
developing a partial least squares (PLS) 
regression model to predict the concen-
tration of key metabolites.14 Raman spec-
tra obtained from a sample would be the 
X block needed for the PLS modelling. 
So, this application requires extracting a 
sample of the cell culture from the biore-
actor and using it for both X-data acqui-
sition as well as reference analysing it 
off-line for the metabolites, the latter 
which would constitute the pertinent Y 
data. Needless to say, this sample better 
be representative of the whole reactor 
volume (the classical TOS challenge). A 
significant SME will be committed if the 
Raman spectra are not obtained for the 
same sample volume which is analysed 
by the off-line reference method, i.e. if 
the support volume for the X- and the 
Y-data acquisition are not identical, 
Figure 4.

The data analy t ical correlat ion 
between the X and Y data blocks will 
be negatively affected by such SMEs, 
which sadly cannot be improved by 
any spectral pre-processing—or fancy 
regression modelling.15,16 The fact that 
bioreactors are usually forcefully mixed 
while the Raman spectra are obtained 
contributes towards reducing this kind 
of sampling error by reducing the 

Figure 3. The inability of the diffuse NIR analytical method to penetrate more than, say, 1 mm of 
a single tablet, constitutes what could be called a Probe Increment Delineation Error; cf. Figure 1 
for a complete slice, or a complete volume support for the signal acquisition.

Figure 4. Focusing on the chemometric calibration modelling, may unwittingly lead to committing a SME because 
“sample 1”, which is analysed by Raman spectroscopy, is not supported by the same sample volume that is analysed by 
the reference method “sample 2”.
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spatial heterogeneity of the cell culture 
medium in the overall reactor volume, 
but it cannot eliminate this entirely. 
Mixing or homogenisation is speci-
fied by the TOS as one of the Sampling 
Unit Operations that should be used 
to reduce sampling error effects from 
of heterogeneity,3,16 and this should of 
course be used liberally. But the funda-
mental mismatch between the physical 
analytical volumes (masses) charac-
terised by the two different analytical 
modalities is a structural condition that 
must be rectified in order to be able 
to decrease the pertinent root mean 
square error of prediction of the chemo-
metric prediction model applied. The 
TOS insight helps us to understand 
why re-design of the [X,Y] data acquisi-
tion set-up can at times be less costly 
than carrying around an unneces-
sary load of ISEs. Much more on ISE, 
and their counterparts (the so-called 
“Correct Sampling Errors”, CSE) in future 
sampling columns.

Discussion and 
conclusions
In the drying example, the NIR method 
is detecting areas of the blend that 
have a high water-concentration since 
the drying process is just starting. If 
the sample analysed by the NIR radia-
tion could be pulled out and analysed 
by a Karl Fischer titration (the same 
physical sample volume), the analytical 
result obtained would be similar though. 
However, both results are not represent-
ative of the whole blend. The samples 
analysed do not refer to a complete 
slice of the drying rig, far less to the 
entire drying vessel volume, but refer to 
a small volume directly in front of the 
sensor probe only, a volume with excess 
water. The sensor is in fact performing 
probe grab sampling, a classical TOS 
error.3 If the analyst does not realise 
that high water content heterogeneity is 
affecting the analytical results, a signif-
icant amount of time would be spent 
in troubleshooting an analytical method 
that in fact works perfectly correctly. 
Understanding how heterogeneity 
affects the manifestation of sampling 
errors, and what will ensue if sampling 
errors are not properly counteracted, is 

very helpful. The TOS is needed even 
within the analytical realm.

The NIR method s.s. also correctly 
determines the 12 % (w/w) drug 
concentration in the restricted top-most 
area of the tablet analysed. The spec-
trum obtained does indeed correspond 
to this concentration. The problem is 
not the NIR method; the problem is 
the heterogeneity of the tablet. The 
problem could be corrected, for exam-
ple, by obtaining spectra of both sides 
of the tablet, which would detect the 
dif ferences in drug concentration 
throughout the tablet. The problem 
could also be corrected by develop-
ing a NIR transmission method which 
would analyse the majority/all of the 
tablet mass, again including both sides 
of the tablet. The problem does not 
require modifying the chemomet-
ric calibration model; it only requires 
modifying the tablet spectral acquisi-
tion setup, or what could be called the 
probe sampling setup.

The SME related to the bioreactor 
example may also be corrected. This 
error was discussed by Mark,17 and has 
been addressed in full in a recent PAT 
exposé.7 The SME confusion is in fact 
one of the most pervasive issues in the 
PAT realm. This problem is not solved 
through any spectroscopy or chemo-
metric approach, i.e. by trying to find a 
different spectral area for the calibration 
model, by changing spectral pre-process-
ing or by any PLS-model mediation, e.g. 
trying one or two extra PLS-components 
might be able to compensate—all of 
which are completely futile. The SME is 
a sampling error, pure and simple, and 
should be addressed exclusively as such; 
later columns will further illustrate these 
issues.
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