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Drug Administration, the aim of which 
is to monitor and  optimise a product 
throughout the production process and 
“design” the quality of a product instead 
of exclusively enacting quality control 
of a final product in a laboratory.5 NIR 
spectroscopy is now a well- established 
technique with the first commercially-
available, stand-alone instruments having 
appeared in the 1980s. In addition to 
the above mentioned advantages, NIR 
spectroscopy can, for some quantita-
tive analyses, show higher performance 
compared to mid-infrared spectroscopy, 
mainly due to combination vibrations 
and overtones appearing in the wave-
number range from 4000–10,000 cm–1 
and also offers the  possibility to deter-
mine physical and chemical proper-
ties simultaneously.6 A relatively new 
trend in the field of NIR spectroscopy 
is hyperspectral imaging where spectra 
are recorded as a function of the areal 
distribution. State-of-the-art instruments, 
in combination with microscopy, can 
record spectra with a lateral resolution of 
only a few micrometres.7 Presently, NIR 
spectroscopy is deployed as an analyti-
cal method in agriculture, food sector, 
 petrochemistry,  pharmaceutical sector, 
environmental sector, clinical sector and 
many other fields.8 This  article highlights 
recent applications of NIR spectroscopy 
on nanostructured materials.

Particle size 
determination
It has long been known that the particle 
size in a powder has a strong influence 
on the resulting NIR diffuse reflection 
spectra;9 this is most obviously observed 
in a shift of the baseline (offset).10 This 

the diameter of a fibre from a spiders 
web measures approximately 1000 nm. 
When talking about nanotechnology 
work carried out with materials, the range 
from 0.1 nm to 100 nm is usually meant. 
With matter having sizes in the nanos-
cale range, special physical, chemical, 
electrical, medical, mechanical and opti-
cal properties can be achieved.1 Together 
with the increasing importance of nano-
materials comes the need for fast, robust 
and accurate analytical methods for their 
physical, chemical and morphological 
characterisation. As mentioned above, 
there are a number of well-established 
methods such as electron microscopy, 
laser diffraction, optical microscope image 
analysis or the Coulter Counter method 
for particle size  analysis.2 Specific surface 
area can be determined with nitrogen 
absorption based on the BET equation 
and pore size and pore volume, apply-
ing MIP or SEC. The analysis of chemical 
properties is not only limited to identifi-
cation but also the observation of deriva-
tisations or surface coverage. A number 
of methods such as nuclear magnetic 
resonance spectroscopy or elementary 
analysis are therefore applied.3,4 Most 
of these methods are time-consuming, 
many are invasive, hard to automate, 
require experienced operators and some 
of them show poor reproducibility. In 
contrast, NIR spectroscopy offers a fast, 
powerful, easy to handle, non-destruc-
tive and high-throughput analysis where 
almost no sample preparation is needed. 
Having the capability to perform in- and 
on-line real-time monitoring of processes, 
NIR spectroscopy has become one of the 
key methods for the process  analytical 
technology initiative of the US Food and 

Introduction
Together with the growing importance of 
nanotechnology, there comes a demand 
for a fast, easy to handle and automated 
analytical method to investigate new 
nano-materials. There are a number of 
conventional methods such as scanning 
electron microscopy (SEM), mercury 
intrusion porosimetry (MIP), laser diffrac-
tion, nitrogen absorption following the 
Brunauer–Emmett–Teller (BET) theory 
or size exclusion chromatography (SEC). 
They all have in common that they meas-
ure only one parameter and that they are 
invasive, time consuming, hard to auto-
mate and require experienced personnel. 
In contrast, near infrared (NIR) spec-
troscopy offers a fast, easy to handle, 
powerful, non-destructive, easily auto-
mated method where several parame-
ters can be determined simultaneously. 
The investigated materials comprise 
nano-porous silica particles, dendrimers, 
nano-coated capillaries, lipid nano vesi-
cles and carbon nanomaterials such as 
fullerenes, carbon nanotubes (CNTs) and 
nanocrystalline diamond (NCD). In addi-
tion, special focus is also put on particle 
size determination of nano-powders.

During recent years, nano materials 
have grown in importance for science 
and industry. An investigation using 
the CAS SciFinder software (American 
Chemical Society, Washington DC, USA) 
to find references containing the word 
“nano” revealed 433 references before 
1989, 7108 references between 1990 
and 1999 and 117,976 references for 
the years 2000–2011. The word “nano” 
has its roots in the Greek word “nannos”, 
which means dwarf. One nanome-
tre equals 10–9 m and, for comparison, 
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the range 10–458 m² g–1 of porous silica 
particles. A principal component  analysis 
(PCA) cluster model allowed for the 
 classification of pure silica, amino-silica 
and silica-C18. This information derives 
from the corresponding stretching and 
deformation vibrations of C–H, N–H and 
O–H bonds in the NIR region.

Carbon nanomaterials
Carbon nanomaterials comprise fuller-
enes, NCD, CNTs and graphitic-nano-
fibres. They show several advantages and 
unique properties compared to other 
materials. The presence of 80–99.5% 
sp2-hybridised carbon facilitates further 
derivatisation steps and the increased 
surface area ratio enables improved 
sensitivity for stationary phases, for 
example for SPE1 or CE.20 Glassy carbon 
electrodes modified with carbon nano-
materials can increase the perform-
ance of electrochemical applications 
significantly, showing higher sensitivi-
ties, lower limits of detection and faster 
electron transfer kinetics.21,22 Figure 2 
shows a range of carbon nanomaterials 
as well as silica particles and dendrim-
ers that have been investigated with NIR 
 spectroscopy.

Carbon nanotubes (CNTs)
CNTs have unique features, being able to 
display metallic, semiconducting as well 
as superconducting electron transport. 
CNTs possess a hollow core, allowing 
guest molecules to be stored and show 
the largest elastic modulus of any known 
material.21 Generally, CNTs can be divided 
into two groups: single wall carbon nano-
tubes (SWCNT) having a  cylindrical 
nanostructure, which is formed by a 
single, rolled-up graphite sheet, show-
ing high aspect ratio, and multi-walled 
carbon nanotubes (MWCNT), which are 
assemblies of several layers of graphene 
cylinders with varying diameter encircling 
one another with an interlayer space of 
0.34 nm. While SWCNTs typically show 
diameters of 0.4–3 nm, MWCNTs have 
diameters of 1.4–100 nm.23 NIR spec-
troscopy has been well established as 
a powerful tool for the  characterisation 
of the electronic band structure of CNTs. 
One of the first reports of NIR spectros-
copy as a tool for the investigation of 

al.16 investigated the feasibility of NIR 
 spectroscopy to predict the particle size 
of TiO2 nanoparticles. They successfully 
developed a model using 35 different 
sieved samples (five classes, 20 nm to 
> 130 μm)  applying back propagation 
artificial neural networks as a non-linear 
model.

Nano-porous silica 
materials
Sil ica gels play the single most 
 important role as stationary phases 
for  chromatographic-based separation 
 procedures. To achieve maximum sepa-
ration efficiencies, it is important to know 
physical properties such as particle size, 
pore volume and specific surface area.17 
Silica-based stationary phases can be 
divided into porous-, non-porous parti-
cles and monoliths. Porous silica parti-
cles tend to be the most universally 
 applicable ones finding use in solid 
phase extraction (SPE), high-perform-
ance liquid  chromatography, micro 
liquid-chromatography, capillary elec-
trophoresis (CE), capillary electro-chro-
matography, gas chromatography and 
material enhanced laser desorption ioni-
sation time-of-flight /mass spectrometry 
(MELDI-ToF/MS).18 Najam-ul-Haq and 
co-workers19 applied NIR spectroscopy, in 
combination with multivariate data analy-
sis, to characterise porous silica particles. 
Cluster models based on the particle 
size and the pore size were established. 
Petter et al.17 reported on quantitative 
partial least square regression-based 
models to determine particle size in the 
range 3–14 μm, pore diameters in the 
range 7–400 nm and specific surface in 

phenomenon can be best described 
with the Kubelka–Munk model where 
reflectance (R∞) is related to the scat-
tering coefficient (S) and the absorption 
coefficient (K):11

2(1 )
( ) =

2
R K

f R
R S

∞
∞

∞

−
=

There are a large number of publica-
tions describing particle size determi-
nation using NIR spectroscopy. All are 
based on the Kubelka–Munk theory and 
Ciurczak’s work on aspirin, ascorbic acid, 
Al2O3 and (NH4)3PO4 for particles larger 
than 85 μm,12,13 stating that the larger the 
particles are, the higher the observed 
absorption is. Higgins and co- workers 
were the first to analyse nano- particles 
with a D90 (D90 is defined as the diam-
eter where 90% of the particles have 
a smaller equivalent diameter) smaller 
than 250 nm.14 They observed that the 
Kubelka–Munk theory was not applica-
ble anymore as smaller particles showed 
higher absorbance than larger ones. This 
can be explained because the light path, 
after interaction with smaller particles, is 
longer than in powders with larger parti-
cles, as the light path increases with 
the number of re-reflections between 
the smaller particles. This explana-
tion is illustrated in Figure 1. Bittner 
et al.15 demonstrated an approach to 
 simultaneously identify and determine 
the particle size of amoxicillin trihydrate 
particles in the sub-micrometre range 
(D90 = 6.9–21.7 μm) observing the same 
effects as Higgins and proving a  linearity 
between  absorbance and  reciprocal 
particle diameter at higher  wavenumbers 
(> 7000 cm–1). Khanmohammadi et 

Figure 1. Schematic of light scattering by (a) large particles and (b) smaller particles. 
Reproduced with permission from Reference 14.

Figure 1: 
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CNTs was published by Chen et al.,24 followed up by others 
such as Itkis et al.25,26 and Liu et al.27

C60 fullerenes
Since the discovery of the  buckminsterfullerene (C60) in 1985 
research on it has subsequently grown. Various fullerenes with 
diameters in the range of 20–100 nm are of high interest in the 
field of peptide and protein identification for diagnostic marker 
research.28 To shorten the turnaround time in the lab, NIR spec-
troscopy, in combination with multivariate data analysis, was 
introduced to monitor and verify derivatisation steps. A robust 
PCA model to identify C60, C60-aminosilica, C60-epoxysilica, 
dioctadeclymethano-[60]-fullerene and IDA-[60]-fullerene was 
established.17

Nanocrystalline diamond (NCD)
NCD can be deposited forming a thin layer on several substrates 
such as nickel, graphite and titanium to selectively bind several 
molecules from biological fluids. Using the MELDI screening 
approach, NCD showed the highest  sensitivity of all carbon nano-
materials with a lower limit of detection of 600  attomol. Due to 
the combined  characteristics of  chemisorption and physisorption 
NCD offers excellent regeneration  capabilities.29 The surface can 
be either –O or –H terminated showing hydrophilic or hydropho-
bic properties, respectively. For a successful further derivatisation 
it is crucial to have information about the termination type. X-ray 
 photoelectron spectroscopy can be carried out to  distinguish 
between –H and –O  termination. This requires trained  personnel 
and enormous expenditure on instrumentation. Heigl et al.1 
developed a NIR spectroscopic method to determine the termi-
nation mode with high  precision applying a fibre-optic probe 
under nitrogen atmosphere. 

Nano-coated capillaries
Inner wall coatings of fused silica  capillaries for CE help to prevent 
irreversible protein absorption during the electrophoretic separa-
tion process.20 Near infrared hyperspectral imaging can be used 
as a tool for  quality control of the derivatisation of the  capillaries. 
We developed a PCA-based cluster model to identify uncoated 
fused silica, latexdiol- coated- and fullerenol-coated fused silica 
capillaries. Having an inner diameter of < 75 μm and a coating 
thickness of only 100 nm, a special experimental set-up was 
created whereby the end of the capillary was sanded down using 
sandpaper P1000 at a 45° angle prior to being measured in NIR 
reflection mode with a lateral  resolution of 6.25 μm (Figure 3).

Guest–host interactions among 
dendrimers
Dendrimers feature a well-defined globular shape, having a 
branched structure consisting of an interior core of shells (genera-
tions) and terminal functional groups. Size molecular weight and 
chemical functionality are easily  controllable. There is a wide vari-
ety of applications in the fields of chemistry, physics, pharmaceu-
ticals and clinical chemistry. Heigl et al.30 used NIR spectroscopy 
to guest–host  interactions between G0–G7 amine-terminated 
poly(amidoamine) as “guests” and porous silica materials as 
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Conclusion
The suitability of NIR spectroscopy as 
a tool to replace numerous conven-
tional methods for the investigation of 
nanostructured materials such as nano-
porous silica particles,  dendrimers, 
nano-coated capillaries, lipid nano vesi-
cles and carbon nanomaterials was illus-
trated and summarised. Due to all the 
advantages listed below, this method 
has high potential to become well-
 established and widely used in the field 
of  nanotechnology, particularly with 
regard to PAT applications:

non-invasive ■

simultaneous determination of  ■

 physical and chemical properties
short analysis time ■

high throughput analysis ■

easy measurement ■

no/almost no sample preparation  ■

necessary.
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